Pricing Feed Ingredients on the Basis of their Nutritional Value

Normand R. St-Pierre

Department of Animal Sciences, 221-A Animal Science Building, 2029 Fyffe Road, The Ohio State University, Columbus OH 43210 Email: st-pierre.8@osu.edu

Take Home Message

In many instances, nutritionists, feed manufacturers, dairy producers and their advisor need an estimate of what a feed is worth on a nutritional basis to facilitate the formulation of balanced diets and the purchase of appropriate and price competitive feedstuffs. Up until now, all methods used shared common flaws. We derived a maximum likelihood method that uses composition and prices of all feedstuffs traded in a given market to estimate unit costs of nutrients and break-even prices of feedstuffs. The method was programmed as a Windows 95-98 application named **SESAME**.

Introduction

A variety of methods have been proposed to estimate unit costs of nutrients and, implicitly or explicitly, the break-even price of feedstuffs. All methods fall into one of two general categories: equation-based (**EBM**) and inequationbased methods (**IBM**). For EBM, a set of equations developed from the nutritional composition of referee feeds is solved using their market prices. The best known method among this group is the Petersen Method (**PM**) in which the energy and protein compositions of corn grain and soybean meal are equated to their respective prices, setting a set of two equations with two unknowns. The method dates back to 1932 (Petersen, 1932) and is presented and discussed at length by Morrison (1956). Although widely used, the method is fundamentally flawed in that it assumes efficient markets in commodity trading and implies economically incoherent behavioral patterns by buyers and sellers of commodities.

The second series of methods, IBM, are basically constrained optimization models solved using mathematical programming techniques (Beneke and Winterboer, 1973; Cornell-Penn-Miner Dairy). Linear programming (LP) is the best known member of this group and became widely used in animal nutrition

Advances in Dairy Technology (2001) Volume 13, page 127

with the discovery of an efficient algorithm (Dantzig, 1960) and the advent of high-speed computers. Within an LP model, a cost function is minimized subject to a series of inequations forcing the solution to meet the nutritional requirements of the animal for which the diet is being optimized. Linear programs suffer from being case specific, and they deliver little information on the unit costs of nutrients. Nutrients with non-binding constraints have an implicit unit cost of zero. Shadow costs of binding nutrients provide information on unit costs that are valid only at the margin. Additionally, the information delivered has a very narrow inference range because it provides estimates that are sound only for one group of animals in a given herd. Consequently, LP is limited in providing estimates of aggregate unit costs of nutrients within a given market. To circumvent these problems, we developed a new procedure that provides estimates of aggregate unit costs of nutrients and break-even prices of feedstuffs based on the trading of all feed commodities in a given market (St-Pierre and Glamocic, 2000).

The method is based on maximum likelihood estimation of nutrient costs. The objective of the paper is to describe briefly the computer software that we wrote to make our procedure available to the industry.

Assumptions

The method sets a series of m equations (m is the number of feedstuffs) with n unknowns (n is the number of nutrients). An error term Σ is added to each equation. Maximum likelihood estimates of unit costs of nutrients are those that minimize the sum of squares of Σ s. Maximum likelihood properties are obtained under the following assumptions:

- Buyers and sellers of commodities act rationally, that is, a buyer would not keep buying an overpriced commodity and a seller would not keep selling commodities at discount prices.
- The value of a feedstuff is equal to the sum of the values of its nutrients. Feedstuffs are used exclusively as sources of nutrients. Feedstuffs with valuable characteristics other than nutrient content (e.g., free-flow agents) are not evaluated properly by our method.
- The errors Σ are independently and manually distributed. In our software, we insure that this assumption is met by eliminating any outlier feedstuffs.

■ SESAMETM Release 1.1

SESAME is a Windows 95-98 based program. Figure 1 shows the opening screen with the main menu items.

Figure 1. Opening screen showing the main menu options.

Feedstuffs is used for viewing and editing the nutritional composition of feedstuffs.

The **Solver** section is used to select feedstuffs nutrients and prices, and to get estimates of nutrients costs and break-even prices of feedstuffs.

In **Price list**, the user can set different price series to reflect, for example, regional differences.

Backup is used to produce a backup copy of the database, or to recover a previously saved copy.

DB Check verifies the integrity of databases and makes necessary repairs when needed.

Configuration provides access to the underlying structure of the nutrient definition table.

Help opens a context sensitive help system.

About prints a disclaimer and provides information on how to contact the authors.

Nutrient Composition: The Feedstuffs Menu

By default, *SESAME* contains three protected feedstuffs databases and two unprotected user libraries. Protected databases are: commercial feedstuffs, CPM library, and NRC (1989) library (Figure 2). Feedstuffs in those protected libraries can be used in setting up problems, but they cannot be edited. The user can customize the nutritional composition of a feedstuffs by first copying it to a user library. The copied feed can be edited once it resides in a user library (Figure 3).

🈓 Feedstuffs database - Dr. Normand St-Pierr	e									x
🌡 Composition 🛛 👸 Price lists	÷	🔅 Dat	abase 🖉 Find	6	Print		? Help		🙊 End	
English system		1	1/17/2000 9:39:01	73		H	(- F F #	>+-	- * ~ ×	e
Midwest	‡D	Group	Name	-	D.M. %	C.P. %	Price	<u>Unit</u>	Quantity	
	2	1	Alfalfa Hay-a, sun, early veg	DM	90.00	23.00		Т		
Eedstuffs:	4	1	Alfalfa Hay-b, sun, late veg	DM	90.00	20.00		T		
- Commercial Feedstuffs [1001]	6	1	Alfalfa Hay-c, early bloom	DM	90.00	20.00		Т		
- CNRC (1989) [1000]	8	1	Alfalfa Hay-d, sun, midbloom	DM	90.00	17.00	0.01	Т		
└ @User Libraries [1017]	10	1	Alfalfa Hay-e, sun, full bloom	DM	90.00	15.00		Т		
	12	1	Almond hulls	DM	90.00	2.10	0.01	Т		
	14	1	Apple pomace, dehy	DM	89.00	4.90		Т		
	16	1	Bermudagrass Hay	DM	93.00	12.00		T		
	18	1	Brome Hay-a, late veg	DM	88.00	16.00		Т		
	20	1	Brome Hay-b, late bloom	DM	89.00	10.00		T		
	22	1	Citrus pulp, dehy	DM	91.00	6.70		Т		
	24	1	Clover Hay, Ladino	DM	90.00	22.00		Т		
	26	1	Clover Hay, Red	DM	89.00	16.00		T		
	28	1	Cotton, hulls	DM	91.00	4.10		Т	-	
	30	1	Fescue Hay, late veg	DM	91.00	10.50		Т		
	32	1	Oat Hay, head emerged	DM	90.00	14.00		T		
	34	1	Orchardgrass Hay, late bloom	DM	91.00	8.40		Т		
	36	1	Peanut Hulls	DM	91.00	7.80	60.00	T		
	38	1	Timothy Hay-a, late veg	DM	89.00	17.00		T		
	40	1	Timothy Hay-b, early bloom	DM	90.00	15.00		T		
	42	1	Timothy Hay-c, midbloom	DM	89.00	9.10		T		
	44	1	Timothy Hay-d, full bloom	DM	89.00	8.10		T		
	46	1	Timothy Hay-e, late bloom	DM	88.00	7.80		T		
	48	1	Timothy Hay-f, milk stage	DM	92.00	7.00		Т		
	50	3	Alfalfa Silage-a, early veg	DM	35.00	23.00		Т		
	52	3	Alfalfa Silage-b, late veg	DM	35.00	20.00		Т		
	54	3	Alfalfa Silage-c, early bloom	DM	35.00	20.00		Т		Ţ
	•								F	

Figure 2. Feedstuffs section showing the three protected libraries [Commerical Feedstuffs, Cornell-Penn-Minor (CPM) Dairy (1998) Library, and NRC (1989)] and the unprotected (User) library. Menu items appear at the top.

	ionnanu ser lene	
End Ecalculation	📲 Overview 🖨 Print 🤗 Help	
Image: Image	1 2/7/1999 10:26:57 AM I 🔍 🗸	► » ►
Use formula 🔺 📢 🕥 🛣 🗶 🐮 📽 🔗	ID Name Value	Unit
Chem. composition	300 RUP (% of CP) 35.0000	0 %
AMINO ACIDS [1001]	301 RUP 19.2850	0 %
- MINERALS [1002]	302 Protein Solubility (% of CP) 20.0000	0 %
VALUES FOR FISH [1021]	303 SolP (Soluble protein) 11.0200	0 %
	304 NPN (Nonprotein nitrogen)	%
- WALUES FOR RABBITS [1020]	305 eNDF (% of NDF) 23.0000	0 %
VALUES FOR RUMINANTS [1014]	306 eNDF 1.8400	0 %
C:B1 [309]	307 neNDF 6.1600	0 %
- OeNDF (% of NDF) [305]	308 RDP 35.8150	0 %
- OneNDF [307]	309[C:B1	%
ONPN (Nonprotein nitrogen) [304] OProtein Solubility (% of CP) [302] ORDP [306] ORUP [301]		

Figure 3. Chemical composition section showing the grouping of nutrients. Values in the right-hand side window are the defaults for soybean meal, solvent extracted, 48% CP.

Nutrient Definition: The Configuration Menu

Over 140 nutrients are defined in *SESAME* to cover applications in a multitude of species (Figure 4). Nutrients can be defined as direct entries (e.g. crude protein), or as calculated nutrients (e.g. NFC). Calculated nutrients are defined using equations inserted in the **Formula** section of the program.

	_ 0	x	Chemical composition elements - Dr. Norm	mand St-Pierre				
ź	End		Ø Database	te all 🛛 👸 Fo	rmulae	Print	? Help	
	• 🗸 🗙 !	C,	English system 155	5 1	2/7/1999 7	:23:47 PM		<i>n</i> + -
Т		•		E ID	Name		Unit	AS DM Tr
٦			Chem. composition	N	Dry matter		%	Г
			- MAINO ACIDS [1001]		2 Crude protein		%	X
			MINERALS [1002]		3 Ether extract		%	X
			- WALUES FOR FISH [1021]		4 Fatty acids		%	X
			WALUES FOR HORSES [1019]		5 Ash		%	X
			- WALUES FOR RABBITS [1020]		6 Crude fiber		%	X
			- WALUES FOR RUMINANTS [1014]		7 NFE		%	X
			WITAMINS [1005]		8 NDF		%	X
			Contraction of the second		9 ADF		%	X
				1	0 Cellulose		%	X
				1	1 Lignin		%	X
				1	2 Hemicellulose		%	X
				1	3 ADIN (% of total N	ŋ	%	X
				1	4 NDICP		%	X
				1	5 NFC		%	X
				3	0 Lysine		%	X
				3	1 Methionine		%	X
				3	2 Cystine		%	X
				3	3 Methionine+Cystin	ne	%	X
				3	4 Threonine		%	X
				3	5 Tryptophan		%	X
				6	0 Calcium (Ca)		%	X
				6	1 Chlorine (CI)		%	X
				6	2 Magnesium (Mg)		%	X
				6	3 Phosphorus (P)		%	X
				6	4 Potassium (K)		%	X
				6	5 Sodium (Na)		%	X
		-		6	6 Sulfur (S)		%	X

Figure 4. Chemical composition elements section showing a partial list of the more than 140 default nutrients part of the standard *SESAME*. Additional nutrients can be added using the **Formulae** section.

Market Prices of Feedstuffs: The Price List Menu

Various price lists can be set to reflect different prices across space (markets)or time (Figure 5). Feedstuffs can be added to a price list using a convenient drag-and-drop feature. There are no limits to the number of price lists.

By price lists By feedstuffs Price lists			🖗 Databas	e	🖨 Print			? Hel	p		会日	End	
English system			-	OSU	4/2/2000	1:39:57	PM	/ 4 4		•	1	×	c
		ID	Feedstuffs nan	ne		Ű	nit P	rice			~	_	-
Price lists:	-۴	118	Molasses, sug-	arcane		-	T	86	.00				1
- OEast Coast [3]		128	Soybean Hulls				Т	82	.00				
- Cexample for Prices number 1 [1]		130	Tallow				Т	350	.00				
- OJDS [6]		134	Wheat Middlin	gs			Т	66	.00				
- Midwest [4] - Obio-1 (2000 [7]		136	Blood meal				Т	430	1.00				
Ohio-2/2000 [9]		138	Brewers grains	, dehy.			Т	141	.00				
- Southeast 2/00 [8]		142	Canola meal, s	olv-extd			Т	149	.00				
		146	Corn gluten fee	ed			Т	96	.00				
		148	Corn gluten me	al, 60%			Т	306	.00				
		150	Cottonseed me	al, 41%			Т	175	.00				
		152	Cottonseed, W	hole			Т	174	.00				
		154	Distillers dried	grains			Т	115	.00				
		156	Feather meal				Т	225	i.00				
		158	Fish meal - And	:hovy			Т	0	.01				
		160	Fish meal - Me	nhaden			Т	415	i.00				
		162	Meat and bone	e meal			Т	195	i.00				
		166	Poultry byprod	uct meal			Т	230	1.00				
		168	Soybean meal,	solv, 44%			Т	186	6.00				
	-li-			-		Ava	ilable	feedstu	iffs				Î
		ID	Name			D.M. %	C.P. %	Unit	Gr	oup		D	le
		۱.	2 Alfalfa Hay-a,	sun, early ve	eg 🛛	90.00	23.00	D T			1 DM	1	-0
			4 Alfalfa Hay-b,	sun, late veg	,	90.00	20.00	T			1 DM	1	-0
			6 Alfalfa Hay-c,	early bloom		90.00	20.00	T			1 DM	1	-0
			8 Alfalfa Hay-d,	sun, midbloo	m	90.00	17.00	T			1 DM	1	-0
		1	0 Alfalfa Hay e,	sun, full bloc	m	90.00	15.00	T			1 DM	1	-0
Start 📝 🖉 🗠 📉 🐼 🕅 🛛 🗛 s		20		1117 Microsol	ft Word - Doc	umenti		K	X 51	n 🕼 🤇	- 68	2.20	4.6

Figure 5. Price lists section showing the different price lists created and feedstuffs prices for the Ohio-2/2000 price list.

Setting up a Problem and Finding Break-Even Prices: The Solver Menu

The core engine resides within the **Solver** section of the program (Figure 6). To create a problem, the user must indicate what feedstuffs, nutrients and prices are part of a problem. The calibration set (Figure 6) contains all feedstuffs traded in a given market. Feedstuffs are added or deleted from this set through a simple drag-and-drop function. Alternatively, the user can identify in the appraisal set those feedstuffs for which he has no current price but for which estimated break-even prices are desired.

🈓 Solver - Dr. Normand St-Pierre									_ 🗆 ×
🖗 Solve problem 🛛 🚳 Price	lists	🏟 Databas	c 🖆 load		🖨 F	Print	?н	elp 🖠	End 🗄
Problems Eeedstuffs Chem. composition		Ohio - 2/2000 - H	igh [33] 📔 🛛 Eng	lish sy:	tem 👘		0	hio-2/2000	···· (
	🔶 ID	Group Feedstuffs nam	ne		D.M.%	C.P.%	Price	Quantity	Unit D 🔺
ECorn gluten feed [146]	64	3 Oat Silage(25-	40%DM)	DM	35.00	11.50		0.000	T 3.
- ECorn grain. cracked [108]	66	3 Rye Silage		DM	32.00	12.80		0.000	T 3-
- 🖹 Corn grain, flaked [110]	68	3 Sorghum Silag	e	DM	30.00	7.50		0.000	T 3
- BCorn grain, ground [112]	70	3 Sorghum-Suda	in Silage	DM	28.00	10.80		0.000	T 3-
- BCorn Silage, few ears [60]	72	3 Timothy Silage	(25-45%DM)	DM	35.00	7.00		0.000	T
ECorn Silage, well eared [62]	100	4 Bakery waste,	dehy	DM	92.00	10.70	92.00	0.000	T 4-
El Cotton, hulls [28]	102	4 Barley, grain		DM	88.00	13.50		0.000	T 4
- Cottonseed, Whole [152]	104	4 Beet pulp, deh	ydrated	DM	91.00	9.70	155.00	0.000	T 4
BDistillers dried grains [154]	106	4 Corn ears, grou	und	DM	87.00	9.00		0.000	T 4
- Breather mear [156]	108	4 Corn grain, cra	icked	DM	89.00	10.00		0.000	T 4-
- 🖹 Fish meal - Anchovy [158]	110	4 Corn grain, flak	ked	DM	89.00	10.00		0.000	T 4-
- EFish meal - Menhaden [160]	112	4 Corn grain, gro	und	DM	88.00	10.00	110.00	0.000	T 4-
- BMeat and bone meal [162]	114	4 Corn grain, hig	h moisture	DM	77.00	10.00	97.00	0.000	T 4-
BMolasses, sugarcane [118]	116	4 Hominy feed		DM	90.00	11.50	110.00	0.000	T 4-
- BOat grain [120]	118	4 Molasses, suga	arcane	DM	75.00	5.80	86.00	0.000	T 4-
BOat Silage(25-40%DM) [641 ▲									-
	•								
4/2/2000 1:49:34 PM Calibra	tion s	et 🗉 22	Appraisal se	et			1 4/2	2000 1:45:22	PM
OSU 🖂 🕨	⊢ 4	> - ✓ × ୯	I I I I I I I	* -	\sim	X C		OSU	
ID Feedstuffs name	Include	ed Price 🛛 🛛 🔼	🗧 ID 🛛 Feedstuffs r	name			Incl	uded Price	U(🔺
100 Bakery waste, dehy	X	92.00	2 Alfalfa Hay-	a, sun,	early v	eg	I	×	0.00
104 Beet pulp, dehydrated	X	155.00							
112 Corn grain, ground	X	110.00							
116 Hominy feed	X	110.00							
118 Molasses, sugarcane	X	86.00							
128 Soybean Hulls	X	82.00							
		F							

Figure 6. Solver section showing available feedstuffs, **Calibration** set of feedstuffs, and **Appraisal** set of feedstuffs. Tabs and buttons allow the user to select feedstuffs, nutrients, and prices part of a problem. A solution is found by pressing the "Solve problem" button.

The **chemical composition** tab allows the selection of nutrients where values are to be estimated. Active prices of feedstuffs are selected using the price list button.

An Example

We used December 2000 Western Plain prices and standard nutritional composition of 22 feedstuffs to estimate their break-even prices when used with high producing dairy cows (Table 1), F.O.B. Minneapolis plus \$30 U.S. per ton for handling and transportation. We selected the following nutrients for our evaluation: rumen undegradable protein (**RUP**), effective NDF (**eNDF**), non-effective NDF (**neNDF**), rumen degradable protein (**RDP**), rumen undegradable Methionine (**U-Met**), rumen undegradable Lysine (**U-Lys**), and Net Energy

	RUP	eNDF	neNDF	RDP	U-Methionine	U-Lysine	NEL	Price
	(%)	(%)	(%)	(%)	(%)	(%)	(Mcal/kg)	(US\$/MT)
Jakerv waste. dehvrated	2.412	0.002	16.558	7.432	0.043	0.076	1.896	109.00
Sarlev grain	3.929	5.685	11.035	7.951	0.032	0.121	1.705	115.00
Seet pulp. dehvdrated	5.064	16.216	32.924	3.763	0.033	0.152	1.630	142.00
Com erain. eround	4.869	0.000	7.920	3.931	0.055	0.080	1.727	101.00
Hominy feed	5.435	4.455	45.045	4.915	0.060	0.174	1.810	137.00
Molasses. sugarcane	0.000	0.000	0.000	4.350	0.000	0.000	1.233	120.00
Sovbean hulls	4.625	1.219	59.751	6.386	0.022	0.210	1.608	102.00
Tallow	0.000	0.000	0.000	0.000	0.000	0.000	5.842	283.00
Wheat middlings	3.742	0.659	32.271	12.634	0.038	0.141	1.616	98.00
Blood meal	66.387	0.000	0.828	14.573	0.710	6.201	1.377	493.00
Brewers grains, dehydrated	15.395	7.618	34.702	7.973	0.194	0.331	1.377	132.00
Canola meal, solv-extd	11.878	5.693	19.059	25.068	0.166	0.792	1.429	170.00
Corn gluten feed	5.760	14.580	25.920	17.280	0.097	0.086	1.722	140.00
Com gluten meal, 60% CP	35.683	4.536	8.064	24.797	0.746	0.442	1.854	372.00
Cottonseed meal. 41% CP	17.843	8.518	15.142	23.653	0.112	0.687	1.585	245.00
Cottonseed, whole	6.441	40.480	0.000	14.719	0.041	0.248	2.053	240.00
Distillers dried grains	12.650	1.619	38.861	10.350	0.152	0.261	1.873	124.00
Feather meal	56.036	0.429	1.437	24.015	0.275	1.440	1.488	344.00
Fish meal, menhaden	36.818	0.184	1.656	24.546	1.046	2.625	1.535	550.00
Meat and bone meal	24.653	0.000	3.720	25.660	0.330	1.247	1.506	278.00
Sovbean meal. solv. 44% CP	15.544	3.050	10.211	28.867	0.157	0.833	1.725	223.00
Sovbean meal, solv, 48% CP	17.357	1.656	5.544	32.234	0.144	1.055	1.810	231.00
Linseed meal	12.478	4.500	18.000	21.992	0.243	0.538	1.458	168.00
Sunflower meal	7.338	3.240	32.760	15.972	0.158	0.315	1.171	126.00

Lactation (NE_L). Nutritional composition values were those reported in Table 1. Prices used were those reported by Feedstuffs magazine for the week of December 18, 2000 for the Minneapolis market with an additional \$30 U.S. /ton added to cover handling, margins and transportation charges. In a few instances, Chicago prices had to be used for which a \$40/ton gross margin was added. All prices are expressed in U.S. dollars per metric ton.

Results as reported by *SESAME* are shown in Figure 7. The numbers in the column labeled "Estimate" in the Estimate of Nutrient Unit Costs table are the calculated values per unit (per kg for all nutrients except NE_I which is per Mcal) of nutrient. Thus, a kg of RUP has an estimated worth of \$0.317. This estimate would appear low except that it represents the value of one kg of RUP which is free of both Methionine and Lysine because the value of those nutrients are already factored in the evaluation. In fact, markets are valuing U-Methionine at \$13.58/kg and U-Lysine at \$1.58/kg. Effective NDF is valued at \$0.21/kg whereas neNDF is valued at -\$0.05/kg, indicating that the markets are currently discounting feedstuffs for their neNDF content. Markets are valuing RDP at \$0.17/kg and NE_I at \$0.048/Mcal).

The break-even prices of feedstuffs (Predicted value) are reported in the two tables labeled "Calibration Set" and "Appraisal Set". Additionally, the Calibration set contains the lower and upper 75% confidence limits of breakeven prices. Using these results, a user would determine that under present western plains conditions, cottonseed meal is relatively over-priced whereas canola meal is relatively under-priced. Results are also shown graphically (Figure 7). In this figure, feedstuffs appearing above the middle horizontal line are relatively well-priced whereas those appearing under the line are relatively over-priced.

During the solution process, *SESAME* concluded that fishmeal is currently so over-priced that it appears to be an outlier. Automatically, *SESAME* moved this feedstuffs from the Calibration set to the Appraisal set (Figure 8).

1/2/01 1:53:06 PM

Western Plains - I/2001

Price Prediction Reliability 20.879

of Nutrient Unit Costs	
Estimate	
0.317210	**
0.211973	**
-0.050538	*
0.169637	**
13.577591	**
1.579244	*
0.048142	**
	Of Nutrient Unit Costs Estimate 0.317210 0.211973 -0.050538 0.169637 13.577591 1.579244 0.048142

A blank means that the nutrient unit cost is likely equal to zero
~ means that the nutrient unit cost may be close to zero
- * means that the nutrient unit cost is unlikely to be equal to zero
- * means that the nutrient unit cost is most likely not equal to zero

	Calibrat	tion set		
Name	Actual [/T]	Predicted [/T]	Lower limit	Upper limit
Bakery waste, dehy	109.000	110.158	103.936	116.380
Barley, grain	115.000	120.753	115.777	125.728
Beet pulp, dehydrated	142.000	125.513	114.411	136.614
Corn grain, ground	101.000	109.925	104.221	115.629
Hominy feed	137.000	110.347	99.726	120.969
Soybean Hulls	102.000	81.547	67.093	96.002
Tallow	283.000	281.257	257.825	304.688
Wheat Middlings	98.000	103.586	95.473	111.699
Blood meal	493.000	495.562	470.749	520.374
Brewers grains, dehy	132.000	158.836	149.030	168.642
Canola meal, solv-extd	170.000	186.531	176.800	196.263
Corn gluten feed	140.000	162.802	154.262	171.342
Corn gluten meal, 60%	372.000	358.318	335.049	381,588
Cottonseed meal, 41%	245.000	209.554	200.650	218,459
Cottonseed, Whole	240.000	239.490	217.144	261.835
Distillers dried grains	124.000	156.379	147.201	165.557
Feather meal	344.000	350.340	326.388	374.292
Meat and bone meal	278.000	256.914	247.333	266.495
Soybean meal, solv, 44%	223.000	217.090	205.817	228.364
Soybean meal, solv, 48%	231.000	233.824	219.859	247.789
Linseed Mealsolv	168.000	189.069	180.579	197.559
Sunflower MealSolv	126.000	123.433	115.016	131.850
Ap	oraisal set			
Name	Actual [/T]	Predicted [/T]		
Molasses, sugarcane	0.000	66.738		
Fish meal - Menhaden	0.000	415.313		

Calculation log

Reason

SESAME: Regression results (Dr. Normand St-Pierre)

138

Figure 8

Action

Conclusion

Our maximum likelihood method uses the prices of all feedstuffs traded in a given market to estimate the implicit costs of nutrients. Because it is a statistically-based method, it provides measures of dispersion of estimated nutrient costs and break-even prices. Also, because it does not use referee feeds (e.g., corn and soybean meal), each feedstuffs used in the estimation can potentially have a break-even price above or below its market price. The method has been programmed into a Windows application available from the author or from Church and Dwight Company who is acting as a distributor.

References

- Beneke, R.R., and R. Winterboer. 1973. Linear Programming Applications to Agriculture. The Iowa State University Press, Ames, IA.
- Cornell-Penn-Miner Dairy. 1998. Version 1.0. Department of Animal Science, Cornell University, Ithaca, NY.
- Dantzig, G.B. 1960. Inductive proof of the simplex method. IBM Journal of Research and Development.
- Morrison, F.B. 1956. Feeds and Feeding. 22nd ed. The Morrison Publishing Company, Ithaca, NY.
- National Research Council. 1989. Nutrient requirements of dairy cattle. 6th rev. ed. Natl. Acad. Sci. Washington, D.C.
- Petersen, J. 1932. A formula for evaluating feeds on the basis of digestible nutrients. J. Dairy Sci. 15:293-297.
- St-Pierre, N.R., and D. Glamocic. 2000. Estimating unit costs of nutrients from market prices of feedstuffs. J. Dairy Sci. (Accepted).
- St-Pierre, N.R., and W.R. Harvey. 1986. Uncertainty in composition of ingredients and optimal rate of success for a maximum profit total mixed ration. J. Dairy Sci. 69:3074-3086.

**0000