Making the Most of Your Dairy Rations through Feed Bunk Management and Design

Trevor J. DeVries¹ and Marina A. G. von Keyserlingk²

¹Department of Animal and Poultry Science, University of Guelph, Kemptville Campus, 830 Prescott Street, Kemptville, ON, K0G 1J0
²Animal Welfare Program, The University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4
Email: tdevries@kemptville.uoguelph.ca

■ Take Home Messages

- Feed bunk access is important for cows to maximize their dry matter intake and the potential of the ration provided.
- Cows respond strongly to the delivery of fresh feed. Changing the time of feed delivery changes peak activity at the feed bunk.
- Feed push-ups are important for keeping feed in front of cows, but have little effect on stimulating feeding activity.
- Increased frequency of feed delivery results in greater access to the feed bunk and less feed sorting.
- Increased bunk space, particularly with feed stalls, results in fewer aggressive interactions and increases access to feed, particularly for subordinate cows.
- Increased feed bunk competition promotes feeding behavior patterns that result in some cows having access to the bunk after feed sorting has occurred, increasing the between-cow variation in diet consumed.

■ Introduction

In domesticated cattle production systems, animals rely on people to provide them with sufficient food, water and shelter to promote growth, productivity, health and welfare. Past research in dairy cattle nutrition has focused almost exclusively on the nutrient aspects of the diet, and has led to many discoveries and improvements in dairy cattle health and production. However, despite many advances in the field of ruminant nutrition, we are still faced with the challenge of ensuring adequate dry matter intake (DMI) to maximize production and prevent disease, particularly with lactating dairy cows.
In this paper we will first describe the importance of feed access to dairy cows, in particular as this relates to disease and composition of feed consumed. Next, we will review studies showing how feeding management and feed bunk design can be altered in ways that reduce competition at the feed bunk, thereby allowing for increased access to feed for all animals. We anticipate that with an improved understanding of feeding behavior, combined with the continued efforts of nutritionists, dairy producers can manage and design their dairy production systems in ways that will allow their cows to fully maximize the potential of the ration provided, thereby improving the health, production and welfare of their animals.

Importance of Feed Bunk Access

During the transition period dairy cows are vulnerable to metabolic and infectious diseases, making early detection of disease valuable. UBC Animal Welfare Program researchers have shown that cows diagnosed with acute metritis after calving spent less time feeding during the prepartum period (d – 12 to –2 prior to calving) (Urton et al., 2005). In a follow-up study individual feeding time and DMI were monitored using a larger sample size of cows (Huzzey et al., 2007). These researchers found that cows with severe metritis consumed less feed and spent less time at the feed bunk during the 2 week period before calving and for nearly 3 weeks before the observation of clinical signs of infection. Moreover during the week before calving cows were 1.72 times more likely to be diagnosed with severe metritis for every 10 min decrease in feeding time. For every 1 kg decrease in DMI during this period, cows were also nearly 3 times more likely to be diagnosed with severe metritis. These results suggest that feeding behavior and feed intake may be used to identify cows at risk for metritis, however, we do not yet understand the causal relationship. In the study by Huzzey et al. (2007), feeding time was positively related to DMI, especially for cows with severe metritis. It follows, therefore, that management and housing practices that allow for increased feed bunk access will positively affect feeding time, and thus improve DMI and possibly reduce disease.

Ensuring equal access to the feed bunk by all cows in a group is also important as cows have been shown to preferentially sort their TMR, typically sorting for the grain concentrate component and discriminating against the longer forage components (Leonardi and Armentano, 2003). Sorting of the diet can lead to cows consuming an inconsistent ration (Stone, 2004; DeVries et al., 2005). It is believed that cows who have primary feed bunk access engage in sorting behavior that results in increased consumption of the concentrate portion and lower consumption of the fiber portion resulting in these animals being at increased risk for sub-acute ruminal acidosis (Cook et al., 2004; Stone, 2004). Similarly, sorting of the TMR by these “dominant” cows can reduce the nutritive value of the TMR remaining in the feed bunk,
particularly in the later hours past the time of feed delivery (DeVries et al., 2005). This may be detrimental for those subordinate cows that do not have access to feed at the time immediately following fresh feed delivery. Cows that are unable to access the feed bunk at peak feeding times may not maintain adequate nutrient intake to meet their energy and essential nutrient requirements. Therefore, promoting equal feed bunk access by all cows will decrease the between-cow variation in the composition of feed consumed.

Feeding Bunk Management

It has typically been accepted that dairy cattle exhibit a diurnal feeding pattern where the majority of feeding activity occurs during the day, particularly around sunrise and sunset (Albright, 1993). However, this observation is almost exclusively based on the feeding patterns exhibited by grazing cattle. Observations of housed dairy cattle indicate that times of peak feeding activity are typically associated with feed delivery and milking, regardless of the time of day at which they occur (e.g. Haley et al., 2000; DeVries et al., 2003). Therefore, we set out in an experiment to determine which of these management practices is the primary factor stimulating dairy cattle to go to the feed bunk (DeVries and von Keyserlingk, 2005). We tested this objective by separating feed delivery and milking times by 6 h. When animals were fed 6 h post milking, they increased their total daily feeding time by 12.5%. This change was predominantly driven by a small decrease in feeding time during the first hour post-milking and a very large increase in feeding time during the first hour immediately following the delivery of fresh feed (Figure 1). These results indicate that the management practice of feed delivery acts as the primary influence on the daily feeding pattern of lactating dairy cows and not, as previously thought, the time of day.
Figure 1. Feed bunk attendance when cows were provided with fresh feed upon the return from milking and when provided fresh feed 6 h post milking (from DeVries and von Keyserlingk, 2005).

One of the most common feeding management practices believed to stimulate feeding activity is feed push-up. When fed a TMR, dairy cows have a natural tendency to continually sort through the feed and toss it forward where it is no longer within reach. This becomes a problem particularly when feed is delivered via a feed alley and, thus, producers commonly push the feed closer to the cows in between feedings to ensure that cows have continuous feed access. In an observational study Menzi and Chase (1994) noted that the number of cows feeding increased after feed push up, however they concluded that feed push ups had “minor and brief effects” in comparison to milking on the feed bunk attendance. In a more recent study, we tested the stimulatory effect of feed push-up by increasing the number of push ups during the late evening and early morning (DeVries et al., 2003). In that study we found that the addition of extra feed push ups did little to increase feeding activity. It does, however, play a vital role in ensuring that feed is accessible when cows want to eat.

As mentioned above, delivery of fresh feed is clearly an important factor in stimulating cows to eat. It follows, therefore, that the frequency of feed delivery should influence the feeding patterns of lactating dairy cows. To test this prediction, we conducted an experiment to determine whether increasing frequency of feed delivery affects the behavior of group-housed dairy cows (DeVries et al., 2005). This objective was tested in two experiments. In the first experiment, the treatments were: 1) delivery of feed once per day (1x), and 2) delivery of feed twice per day (2x). The treatments for the second experiment were: 1) delivery of feed 2x, and 2) delivery of feed four times per day (4x). In both experiments, increased frequency of feed provision increased total daily feeding time by 10 and 14 minutes, respectively, as well
as increased the distribution of feeding time throughout the day. The distribution of feeding time in both experiments indicated that cows had more equal access to feed throughout the day when provided feed more frequently. Frequency of feed delivery had no effect on the daily lying time of the cows or the total number of aggressive interactions at the feed bunk. However, we did find that subordinate cows were not displaced as frequently when fed more often, indicating that these cows would have greater access to feed, particularly fresh feed, when the frequency of feed delivery is high.

In addition to these behavioral measures, we also looked at the effects of frequency of feed delivery on feed composition throughout the day. In both experiments we noted that the NDF content of the TMR present in the feed bunk increased throughout the day, indicating that sorting of the feed had occurred. Further, we found that increasing the frequency of feed delivery from 1x to 2x reduced the amount of TMR sorting, but no further reductions in sorting were gained when feed was delivered 4x. These changes in NDF resulted in changes in the forage to concentrate ratio over the course of the day, particularly for the 1x treatment (Figure 2). These results, coupled with the finding that increasing the frequency of feed provision increases access to feed, particularly fresh feed, suggests that higher frequencies of feed delivery have the potential to reduce the variation in diet quality consumed by the cows.

![Figure 2. Forage to concentrate ratio of the initial TMR and orts estimated from the initial NDF content values for the TMR and the final NDF content of the orts (adapted from DeVries et al., 2005).]
Feed Bunk Design

One of the specific objectives of cattle housing is to provide a comfortable environment that will allow cows to meet their behavioral and physiological needs (Phillips, 2001). There are several aspects of the feeding environment that have the potential to influence the ability of cows to access feed, including the amount of available feed bunk space per animal and the physical design of the feeding area.

Reduced space availability has been shown to result in increased aggressive behavior in cattle (Kondo et al., 1989). When feed bunk space is limited, increases in aggressive behavior are thought to limit the ability of some cows to access feed at times when feeding motivation is high, particularly after the delivery of fresh feed. In a recent study we set out to determine if increased space availability at the feed bunk (1.0 vs. 0.5 m/cow) improves access to feed and reduces social competition (DeVries et al., 2004). When cows had access to more feed bunk space there was at least 60% more space between animals and 57% fewer aggressive interactions while feeding. These changes in spacing and aggressive behavior in turn allowed cows to increase feeding activity throughout the day. The increase in feeding activity was especially noticeable during the 90 minutes after fresh feed was provided. During this period, cows at the 1.0 m/cow stocking density increased their time at the feeder by 24%, and this effect was strongest for subordinate animals.

In addition to the amount of available feed bunk space, the physical design of the feeding area can influence feeding behavior. One of the most obvious features of the feeding area is the physical barrier that separates the cow and the feed. Different feed barriers are all designed with the intention of allowing cows equal access to feed, however, some designs can limit the cows’ ability to freely access feed and increase the frequency of aggressive interactions at the feed bunk. Many producers believe that a feed line barrier that provides some sort of separation between cows (e.g. headlocks) will reduce competition and improve feed access. To test this hypothesis, we completed an experiment comparing a post-and-rail versus a headlock feed line barrier on the feeding and social behavior of dairy cows (Endres et al., 2005). Average daily feeding time did not differ when cows had access to feed via headlocks (271.7 ± 3.8 min d⁻¹) compared to the post and rail barrier (277.8 ± 3.8 min d⁻¹). However, during periods of peak feeding activity (90 min after fresh feed delivery) cows that had lower feeding times relative to group mates when using the post-and-rail barrier showed more similar feeding times to group mates when using the headlock barrier. There were also 21% fewer displacements at the feed bunk when cows accessed feed by the headlock barrier compared to the post-and-rail barrier. These results suggest that using a headlock barrier reduces aggression at the feed bunk and improves access to feed for socially subordinate cows during peak feeding periods.
To determine how the amount of available feed bunk space and the physical design of the feeding area interact with one another, we followed up on our previous studies with a trial that examined how stocking density at the feed bunk affects the feeding and social behavior of dairy cows and if this was also affected by the type of feed barrier used (Huzzey et al., 2006). Although daily feeding times were higher (Figure 3) and the duration of inactive standing in the feeding area was lower when using a post-and-rail compared to a headlock feed barrier we noted a significant reduction in aggressive behavior with the headlock barrier compared to the post and rail barrier. As well, regardless of barrier type, feeding time decreased and inactive standing increased as stocking density at the feed bunk increased. Cows were displaced more often from the feeding area when the stocking density was increased, and this effect was greater for cows using the post-and-rail feed barrier. Further, we found that subordinate cows were displaced more often with the post-and-rail barrier design, particularly at high stocking densities. From these results, we can conclude that overstocking the feed bunk will decrease time spent at the feed bunk and increase competition, resulting in poor feed access. Further, the use of a barrier that provides some physical separation between adjacent cows, such as a headlock feed barrier, can be used to further reduce competition at the feed bunk. A less aggressive environment at the feed bunk may also have long term health benefits, as it has been suggested that cows engaged in a high number of aggressive interactions at the feed bunk may be at risk for hoof health problems (Leonard et al., 1998).
Figure 3. Daily feeding time per cow at 4 different stocking density treatments when provided either a headlock or a post-and-rail feed barrier (from Huzzey et al., 2006).

In the two studies on feed barrier design (Endres et al., 2005; Huzzey et al., 2006) the use of a headlock reduced the incidence of displacements at the feed bunk, but did not completely eliminate aggressive behavior, indicating that the neck division does not provide full protection. Researchers have demonstrated in pigs (Andersen et al., 1999) and cattle (Bouissou, 1970) that providing partitions that separate the bodies of adjacent animals can have profound effects on reducing competition and allowing animals to feed for longer periods. For this reason, we were interested if the addition of partitions (feed stalls) between the bodies of adjacent cows provides additional protection while feeding and allows for improved access to feed (DeVries and von Keyserlingk, 2006). When animals had access to more space, particularly with the feed stalls, there were far fewer displacements while feeding (Figure 4). Further, subordinate cows benefited the most from this reduction in displacements. Reduced aggression at the feed bunk allowed cows to increase their daily feeding time and reduce the time they spent standing in the feeding area while not feeding.
Based on these results, we could conclude that the provision of more feed bunk space, particularly when combined with feed stalls, will improve access to feed and reduce competition at the feed bunk, particularly for subordinate cows. This could help reduce the between-cow variation in the composition of ration consumed by preventing subordinate cows from being forced to access the bunk only after dominant cows have sorted the feed.

To test this prediction we recently completed a study to investigate how feed sorting is affected by competition for access to the feed bunk. Thirty-six dry Holstein cows, consuming a close-up TMR diet, were assigned to one of 2 treatments: 1) noncompetitive (1 cow/feed bin) or 2) competitive (2 cows/feed bin). Feeding behavior, DMI, and sorting behavior were monitored on 4 separate days during weeks 2 and 3 before the expected calving dates of the cows. Regardless of treatment, the cows sorted against long particles and for short particles. Interestingly, there was a tendency for more sorting for short particles during the first 4 h after feed delivery. Competition at the feed bunk dramatically increased the feeding rate of the cows throughout the day (Figure 5). The competitively-fed cows also had fewer meals per day, and tended to have larger and longer meals. Competition also changed the distribution of DMI over the course of the day, resulting in higher intakes during the later hours after feed delivery after much of the feed sorting had already occurred (Figure 6). These results suggest that increased competition at the feed bunk promotes feeding behavior patterns that will likely increase the between-cow variation in composition of TMR consumed.
Figure 5. Average hourly feeding rate (kg/min) for cows fed noncompetitively (1 cow/feed bin) or competitively (2 cows/feed bin) (from Hosseinkhani et al., in press).

Figure 6. Average hourly DMI (kg) for cows fed noncompetitively (1 cow/feed bin) or competitively (2 cows/feed bin) (from Hosseinkhani et al., in press).
Conclusions

This proceedings chapter summarizes a number of studies that we have undertaken that collectively provide us with a basic understanding of how feed bunk management and design can be manipulated to reduce competition, improve feed access, and reduce between-cow variation in composition of feed consumed. Future research must now determine the implications of increased feed access and reduced competition at the feed bunk on the dry matter intake, milk production, and health of lactating dairy cows, particularly those in early lactation.

Acknowledgements

We gratefully acknowledge Dan Weary, Doug Veira, Karen Beauchemin, Marcia Endres, Juliana Huzzey, Katy Proudfoot, Ali Hosseinkhani, and Paul Valois for their contribution to some of the experiments cited herein. This research was funded in part by the Natural Sciences and Engineering Research Council of Canada, Dairy Farmers of Canada, Westgen Endowment Fund, Investment Agriculture Foundation of British Columbia, and many others listed at www.landfood.ubc.ca/animalwelfare.

References

