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 Take Home Messages 

 Nutrient requirements are human constructs.  Proving their existence has 
been so far elusive. 

 Various functional forms can be fitted to response-type data.  Generally, 
many functions show similar quality of fit to the data, yet have 
substantially different implications.  This is an area where we need some 
younger brains to be put to good use. 

 Whenever the response function of output to nutritional input(s) is smooth 
(i.e., continuous first derivative) and concave (i.e., declining returns to 
scale) the level of input that maximizes its efficiency is always less than 
the level of input that maximizes profits.  Consequently, efficiency 
maximization is always accompanied by a reduction in the economic 
efficiency. 

 Whenever the penalty to achieve maximum efficiency is relatively small, 
setting maximum efficiency as an operational goal can be desirable.  With 
nutritional inputs, however, it appears that maximum efficiency is 
frequently accompanied with substantial economic penalties. 

 Introduction 

It used to be so simple: you had cows, you fed them, they gave milk, you got 
paid and nobody cared about manure.  Those days are gone and likely will 
never be seen again.  Nowadays much attention is being dedicated to the 
impact that agriculture in general and dairy production in particular have on 
the environment.  In the process, many are attempting to optimize the 
efficiency of dairy production.  More specifically, the objective no longer is in 
optimizing production, but in maximizing production per unit of a given input 
(e.g., maximizing milk production per unit of protein intake or per unit of N 
excreted).  Deeply embedded into this line of thinking is the often poorly 
defined concept of nutritional requirements. In this paper we dispute the 
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wisdom of using nutritional requirements for defining efficiencies and 
challenge the desirability of efficiency optimization. 

 Requirements versus Response-Based Systems 

In a requirement-based system the level of production of the animals is an 
input (Figure 1).  The outcome is a set of nutrient input levels believed to have 
the ability of supporting (sustaining) the stated level of production.  There are 
numerous examples of such systems; one of the best known and often used 
is that of the National Research Council (NRC, 2001). 

 
Figure 1.  Requirement-based system for diet formulation.  Level of 
productivity is an input to the system. 

In a response-based system the level of production of the animals is not an 
input but an output of the system’s evaluation (Figure 2).  Although an 
asymptotic value for production might be used as an input, this is reflective of 
biological and physical limitations and not of a desired output level.  The 
problem is that many have confused the two approaches and have 
mischaracterized a requirement-based system as a response-based system. 
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Figure 2. Response-based system for diet formulation.  Level of 
productivity is not an input to the system. 

As an example, NRC (2001) indicates that under default environmental 
conditions, a mature (65 month old) dairy cow weighing 680 kg at a body 
condition score of 3.0 and producing 35 kg of milk per day at 3.5% fat, 3.0% 
true protein and 4.8% lactose requires 34.8 Mcal/d of net energy for lactation 
(NEL) and 2,407 g/d of metabolizable protein (MP).  The requirements for an 
identical cow at a level of production of 25 kg/d are 27.9 Mcal/d of NEL and 
1,862 g/d of MP.  The correct interpretation of these figures is that based on 
our current nutritional knowledge we have all reasons to believe that the first 
cow will continue (in the short term) to produce 35 kg/d and be in nutritional 
balance if the dietary supply matches the stated requirements.  Nowhere do 
these recommendations imply that if we could stuff 34.8 Mcal/d of NEL and 
2,407 g/d of MP into the second cow her production would rise from 25 to 35 
kg/d.  Unfortunately, this has been the common (mis)interpretation of NE-
supported and MP-supported milk in the NRC computer model output.  As 
importantly, nowhere does it say that 34.8 Mcal/d of NEL and 2,407 g/d of MP 
is the sole combination of energy and protein input levels that could support 
35 kg/d.  A cow is a very complex and dynamic system where energy supply 
and the form in which it is supplied (i.e., the substrates) affect the pathways of 
protein utilization (and vice-versa).  Requirement-based systems are useful 
systems for determining feed combinations needed to achieve a pre-
determined level of production (i.e., common ration balancing).  They are, 
however, grossly incorrect at predicting animal outputs at supply levels other 
than “required” levels. 
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 Do Animals Have Requirements? 

If you come to Ohio State University for a graduate degree and if we serve on 
your graduate committee it is likely that you will be asked the following 
question either during your general examination or during your defense: do 
animals have requirements?  In 15 years, the answer has been a unanimous 
“yes”, but with the only justification that nutritional requirements are being 
taught as dogmas in nutrition classes.  Even more baffling is that students are 
at a loss in justifying their answers; they do not know how they would prove it.  
A proof in this instance requires a careful definition of what “a requirement” 
means. 

Narrow Definition 

The requirement for a given nutrient is a unique level of supply for which (1) a 
lesser supply results in a lower level of production, and (2) a greater supply 
does not result in additional productivity.  Mathematically, this implies a break-
point in the relationship between production (e.g., milk) and nutritional supply 
(e.g., MP).  What very few have ever considered is how one could prove the 
presence of a break-point, i.e., a point on a curve where the first derivative 
does not exist.  This is an entirely different matter than demonstrating that a 
break-point relationship can be fitted.  Many researchers have incorrectly 
interpreted a good fit as a proof of concept.  An example will illustrate this 
fallacy. 

Isoleucine (Ile) Requirements in Growing Swine 

Results from an experiment reported by Parr et al. (2003) will be used here.  
In short, growing pigs were assigned to 6 different diets varying in dietary Ile 
concentrations.  Mean average daily gain (ADG) for each of the 6 treatments 
is depicted in Figure 3.  Results show a general trend towards greater ADG 
as dietary Ile level increased, but the exact, quantitative relationship between 
ADG and Ile is clearly not evident. 
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Figure 3.  Average daily gain (g/d, y-axis) in growing pigs as a function 
of dietary Ile concentration (%, x-axis).  Data from Parr et al. (2003). 

Under a narrow definition of a nutrient requirement, there should be a dietary 
Ile concentration that (1) maximizes ADG and (2) where a first derivative does 
not exist.  Expressed algebraically, this segmented linear model takes the 
following form: 

ADG =  ADGmax  -  b (X0  -  Ile) if Ile < X0  [1] 
ADG =  ADGmax    otherwise. 
 

In [1], ADGmax, b, and X0 are 3 parameters to be estimated.  The parameter 
estimates that result in the best fit and the resulting model are shown in 
Figure 4.  Just looking at these results, one would conclude that the model fits 
very well the data, with a very high R

2
 (0.977) and low error (SE = 20.4 g/d).  

The requirement for Ile is then estimated at 0.47% of the diet. 
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Figure 4.  Linear and plateau model of ADG (g/d, y-axis) in growing pigs 
as a function of dietary Ile concentration (%, x-axis).  Data from Parr et 
al. (2003).   
 
Best fit is:  

Y = 716.3 (11.8) - 2850 (361.0)  (0.4669 (0.0083) – Ile)  if   Ile < 0.4669, 

Y = 716.3 (11.8)  otherwise.   
R

2
 = 0.977, SE = 20.4 g/d.  

Necessary Conditions to Prove Strict Requirements 

This is where some people have incorrectly made a huge leap of faith and 
concluded from similar types of data analyses that requirements do exist and 
are identifiable.  The problem is that the identifiability is based on the 
assumption that strict requirements do exist, and that the proof that strict 
requirements do exist is based on the identifiability.  The circularity of this 
argument should be evident.  More disconcerting is that nobody, not me, not 
Ronald A. Fisher, nor Einstein have been able to define (mathematically) the 
conditions that would prove that a break-point does exist.  This would require 
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proving that the first derivative does not exist for a certain level of X and 
nobody seems to know how that can be proven empirically. 

Broad Definition 

Under a broad definition, the requirement for a given nutrient is simply a level 
of supply that results in a given (desired) level of production.  We no longer 
impose the condition that lower supply levels result in less production, and, 
especially, we no longer impose the restrictive concept that greater supply 
levels do not result in the same level of productivity.  When nutrients are 
looked at on an individual basis, this broad definition is equivalent to fitting a 
response function of production levels on nutrient intake (or density).  
Properties of the relationship are dependent on the particular type of function 
being fitted.  The problem is that a great many functions can be fitted (in fact 
there are an infinity of such functions), each implying different properties on 
the relationship between nutritional inputs and production levels.  Here again 
an example should be useful. 

Quadratic Response with Plateau 

This model can be stated as follows: 

ADG =  ADGmax  -  b (X0  -  Ile)
2
 if Ile < X0  [2] 

ADG =  ADGmax    otherwise. 
 
With this model, the ADG response to dietary level is quadratic up to a level 
X0 where it reaches a plateau.  A big difference between [2] and [1] is that in 
[2] the function is smooth.  That is, the first derivative exists for all levels of Ile.  
This curve does not have a breakpoint.  The parameter estimates resulting in 
the best fit and the resulting curve are shown in Figure 5.  Although it is 
tempting to label X0 as “the requirement”, the economic implication of this 
function is that the optimal level of Ile is less than X0 unless the nutrient is 
free, or the value of an additional unit of ADG is infinite – two conditions that 
are highly improbable in the world that we live in.  So, although X0 can be 
labeled as a requirement, animals would never be fed at their “requirement 
level”, but always at a lower level.  Note also that the “requirement” calculated 
from this model (0.501%) is 7.3% greater than the requirement calculated 
from the segmented-linear model (0.467%). 
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Figure 5.  Quadratic and smooth plateau model of ADG (g/d, y-axis) in 
growing pigs as a function of dietary Ile concentration (%, x-axis).  Data 
from Parr et al. (2003).   
Best fit is:  

Y = 715.5 (8.77) – 17,557 (4260.2)  (0.501 (0.014) - Ile)
2
  if Ile < 0.501, 

Y = 715.5 (8.77)  otherwise.   
R

2
 = 0.987, SE = 15.2 g/d.  

Monomolecular Model 

The monomolecular function is similar in shape to the logistic function past its 
inflection point.  Its algebraic form is: 

 ADG  =  ADGmax  (1  - B  EXP(-k  Ile))   [3] 
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This function never reaches a plateau, but converges towards an asymptote 
(parameter ADGmax in [3]).  Parameter estimates resulting in best fit and the 
resulting curve are shown in Figure 6.  Some have argued that the level of 
input at which the second derivative of this function reaches a minimum can 
be interpreted as a “requirement”.  As we shall see, this interpretation is 
incorrect. 

Figure 6.  Monomolecular model of ADG (g/d, y-axis) in growing pigs as 
a function of dietary Ile concentration (%, x-axis).  Data from Parr et al. 
(2003).   
Best fit is:  

Y = 733.4 (10.2)  (1 - 627.4 (619.2)  EXP(-19.53 (2.62)  Ile)).   
R

2
 = 0.993, SE = 11.1 g/d.  

Quadratic Polynomial Model 

This is the simple quadratic function that we all learned in high school: 

 ADG  =  b0  +  b1  Ile  +  b2  Ile
2
    [4] 
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Best parameter estimates and the resulting curve are shown in Figure 7.  
Note that in spite of its simplicity (and some would say naiveté), this function 
also fits the data very well. 

 
Figure 7.  Quadratic polynomial model of ADG (g/d, y-axis) in growing 
pigs as a function of dietary Ile concentration (%, x-axis).  Data from 
Parr et al. (2003).   
Best fit is:  

Y = 2305 (490.6) + 11,288 (2073.8)  Ile - 10,479.9 (2156.3)  Ile
2
.  

R
2
 = 0.976, SE = 21.1 g/d.  

So what is the correct relationship between ADG and dietary Ile in this 
example?  All models presented involve 3 parameters.  Based on the highest 
R

2
 and the smallest standard error, some would argue that the 

monomolecular model has the best fit to the data.  But to argue that a 
difference of 0.01 between two R

2
 is meaningful is ignoring the errors in the 

measurements.  The fact is that statistics are generally of little help in 
assessing the comparative fit of various functions expressing the biological 
response of animals to dietary inputs.  There are just too many alternatives 
and one invariably ends up with multiple functions that fit the data equally 
well, but that imply substantially different interpretations. 
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 Population Response 

The framework of a segmented-linear response model can only be 
theoretically valid when data are from animals of very similar genetics in near 
identical physiological states and environments.  When measurements are 
made on individuals who are genetically different, or under different 
physiological status (e.g., stage of lactation in dairy) or environments, then the 
population response is expected to be smooth even if one assumes that the 
response function of each individual follows a model of an abrupt threshold 
and plateau (i.e., the segmented-linear model).  The mathematical and 
statistical theory supporting this was developed decades ago at the University 
of Reading (Curnow, 1973).  Figure 8 illustrates the concept.   

 

Figure 8.  Illustration of a smooth population response curve (thick line) 
based on an abrupt threshold and plateau model (i.e., segmented-linear 
model) for individuals (series of thin lines). 

In this figure, although the response of each individual follows a segmented-
linear response (thin lines in Figure 8), the response averaged across 
individuals is smooth (i.e., no break-point), sigmoid, and converges toward an 
asymptote (the thick line).  The exact mathematical form of the population 
response function based on some assumptions regarding the distribution of 
individuals is messy, somewhat complicated, and has not been expanded to 
multiple dimensions when the joint response to 2 or more nutrients is being 
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investigated.  The important point from this work, however, is that there is a 
strong theoretical basis that supports smooth and asymptotic responses to 
nutrients for groups of individuals even if one believes that strict nutrient 
requirements (as defined in a prior section) do exist for individuals.  
Response-type experiments in dairy are never conducted on animals of 
identical genotypes; physiological status always varies across individuals; and 
micro-environments are never identical.  Therefore, although one can always 
fit segmented-linear models to dairy response experiments as we did in 
Figure 4, such models make little theoretical sense and this practice should 
be discontinued. 

 Nutrient Requirements For Asymptotic Models 

Doepel et al. (2004) have argued in favour of (1) using a logistic function as 
the basis for expressing the relationship of milk protein or amino acid (AA) 
output to intake of various amino acids, and (2) to determine requirements as 
intake levels where the second derivative of the logistic function reaches a 
minimum (Figure 9).  The logistic function is indeed a wise choice, as it 
closely resembles the complex theoretical function proposed by Curnow 
(1973) (i.e., sigmoid and asymptotic).  The argument for the identification of 
requirements is, however, economically incorrect. 

The level of input where the second derivative of the logistic function reaches 
a minimum is in fact the point where the average efficiency is maximized.  To 
declare this level a requirement is not self-evident.  More troublesome is that 
the supply level that one should target to maximize profits should be greater 
than the so-called requirement level; oftentimes substantially greater.  We 
shall use a concrete example from Lorraine’s paper to illustrate what we 
mean. 
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Figure 9. Representation of a logistic response to histidine supply (a), 
with its first (b) and second (c) derivatives. The curve (b) represents the 
marginal efficiency. The maximum marginal efficiency (a2, b1) is 
calculated from the first derivative, and the lower (a1, c1) and upper (a3, 
c2) critical points are calculated from the second derivative. The upper 
critical point is assumed to represent the requirement for duodenal AA 
supply.  From Doepel et al. (2004). 
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Figure 10. Relationship between Met output in milk and supply of Met at 
the duodenum from a meta-analysis of literature data. Data points from 
the same experiment are connected by dotted lines. The logistic (solid 
line) and segmented linear (dashed line) models are superimposed.   
From Doepel et al. (2004). 

Figure 10 shows the relationship between methionine (Met) output in milk and 
the total estimated Met supply at the duodenum obtained from a meta-
analysis of literature data.  The Met requirement using a segmented-linear 
model was 50 g/d.  The Met supply level where the second derivative of the 
fitted logistic function reached a minimum was also 50 g/d, hence reinforcing 
the perception that the Met requirement under the conditions summarized by 
this meta-analysis is 50 g/d of Met supply at the duodenum.  Elementary 
economics, however, would indicate that the profit-maximizing supply is 
where the marginal value is equal to the marginal cost, i.e., the cost of the last 
unit added equals the value of the additional product.  Expressed 
mathematically, the optimum Met is that where the derivative of the logistic 
function (i.e., the slope) is equal to the ratio of the price of dietary Met to that 
of milk Met. 

The cost for Met supplied at the duodenum is approximately $0.02/g using 
commercially available rumen-protected Met.  Milk protein (which contains 
approximately 3% Met) has averaged a market price of $2.72/lb ($6.00/kg) 
between 2005 and 2011 on the U.S. market.  This translates to a price of 



Optimizing Efficiency of Dairy Production. 45 

about $0.20/g of milk Met. Hence, the optimum Met supply would be found as 

the point on the logistic curve of Figure 10 where the slope equals 0.02  0.20 
= 0.10.  This occurs approximately at a Met supply of 70 g/d, a level which is 
40% greater than that designated as the “requirement”. 

A Met supply of 50 g/d at the duodenum yields 26 g/d of milk Met, which 

translates to 867 g/d of milk protein.  The Met efficiency (26  50 = 0.52) is 
maximized at this level of Met supply.  Pricing milk protein at $6.00/kg, the 
value of the milk protein is $5.20/d.  Using a price of $0.02/g for Met supply at 
the duodenum, the 50 g/d of Met costs $1.00/d, resulting in a gross profit of 
$4.20/cow per d. 

A met supply of 70 g/d at the duodenum yields 31 g/d of milk Met, which 
translates to 1,033 g/d of milk protein.  The Met efficiency at this level of 

supply (31  70 = 0.44) is substantially less than at a supply of 50 g/d.  The 
value of the milk protein, however, is increased to $6.20/d, while the cost of 
the Met supplied is increased to $1.40/d, resulting in a gross profit of 
$4.80/cow per d.  Thus, driving the system towards maximum Met efficiency 
results in a net loss of $4.80 - $4.20 = $0.60/cow per day, or over $200 per 
lactation compared to supplying Met for maximum economic returns. 

 Maximum Efficiency Always Comes at a Cost 

The previous example is understandably a little bit naïve, but served as an 
illustration of the penalty associated with using maximum efficiency of inputs 
as targets.  A few years ago, we conducted a large study to estimate the 
economic penalty that would be associated with a proposed farm policy that 
would aim at enforcing maximum N efficiency in livestock feeding (St-Pierre 
and Thraen, 1999).  Using an expansion of Curnow theory, we developed an  
empirical response model based on NEL and crude protein (CP) inputs.  The 
response function for cows of average genetic potential is shown in Figure 11.  
Note that it is smooth (continuous first partial derivatives) and asymptotic. 
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Figure 11.  Response function of milk output to net energy for lactation 
(NEl) and crude protein (CP) concentration of the diet (St-Pierre and 
Thraen, 1999). 

 
Using average feed and milk prices during the 1995-1999 period, we 
determined the input levels that maximized nitrogen (N) efficiency, maximized 
milk production, and maximized income over feed costs (IOFC).  Results are 
shown in Figure 12. 
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Figure 12.  Contour plot showing the response function of milk 
production to net energy for lactation (NEl) and crude protein (CP) 
concentration of the diet, and the input combination leading to 
maximum nitrogen (N) efficiency (Max M/N), maximum milk production 
(Max MILK), and maximum income over feed costs (Max IOFC).  From St-
Pierre and Thraen (1999). 

Table 1 reports results of various calculations comparing a U.S. national dairy 
system targeting maximum economic efficiency vs. maximum input efficiency 
(N in this case).  The total societal cost to a policy enforcing maximum N 
utilization on dairy farms was estimated at $1.35 billion per year, which 
equated to $9.55/kg of reduction in N excretion. 
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Table 1. Immediate economic consequences of enforcing maximum N 
efficiency (MAX M/N) as opposed to optimum economic allocation of 
nutrient inputs (MAX IOFC) on the national cost of producing 70 billion 
kg of milk, assuming a national herd with a milk production potential of 
11,350 kg/yr per cow (from St-Pierre and Thraen, 1999). 

 MAX IOFC MAX M/N 

Actual milk production, kg/cow per 

year 

10,955 9,812 

N excretion, kg/cow per year 146 111 

Income over feed costs, $/cow per 

year 

$1,893 $1,639 

Net income, $/cow per year $622 $368 

Number of cows, millions 6.39 7.13 

N excretion, tonnes/year 932,940 791,430 

Net income, million $/year 3975 2624 

Reduction in net income per kg of 

reduction of N excretion, $/kg of N 

. 9.55 

 Conclusions 

Although it would appear desirable to thrive towards efficiency maximization 
in dairy, this will nearly always be accompanied with a reduction in 
profitability.  Depending on the size of the profit reduction, maximization of 
input efficiency can range from being achieved at an acceptable cost to being 
highly objectionable. 
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